skip to primary navigationskip to content
 

Research

The research pages of the Laboratory are being updated and will be back in the near future. In the meanwhile, we list below some current research lines and publications.

Computational Multiphysics

L. Michael and N. Nikiforakis. 2017 "A multi-physics methodology for the simulation of the two-way interaction of reactive flow and elastoplastic structural response." (submitted)

Detonation propagation in non-ideal, condensed-phase explosives.

S. D. Wilkinson, M. Braithwaite, N. Nikiforakis, L. Michael. 2017  "A complete equation of state for non-ideal condensed phase explosives." Journal of Applied Physics (accepted)

L. Michael and N. Nikiforakis. 2017 "The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: Inert case." Shock Waves (accepted)

L. Michael and N. Nikiforakis. 2017 "The evolution of the temperature field during cavity collapse in liquid nitromethane. Part II: Reactive case." Shock Waves (accepted)

E. Ioannou, S. Schoch, N. Nikiforakis, L. Michael. 2017. "Detonation propagation in annular arcs of condensed phase explosives." Physics of Fluids (accepted).

L. Michael and N. Nikiforakis. 2016. "A hybrid formulation for the numerical simulation of condensed phase explosives" Journal of Computational Physics, Volume 316, 1 July 2016, Pages 193–217 doi:10.1016/j.jcp.2016.04.017

S. Schoch and N. Nikiforakis. 2014. "Numerical modelling of underwater detonation of non-ideal condensed-phase explosives." Physics of Fluids 27, 016101 (2015); http://dx.doi.org/10.1063/1.4905337.

S. Schoch, N. Nikiforakis, B. J. Lee, R. Saurel. 2013. “Multi-phase simulation of ammonium nitrate emulsion detonations”, Combustion and Flame, Volume 160, Issue 9, pp. 1883-1899.

Coupled simulations of elastoplastic solids and explosives.

S. Schoch, K. Nordin-Bates, N. Nikiforakis. 2013. “An Eulerian algorithm for coupled simulations of elastoplastic-solids and condensed-phase explosives”, Journal of Computational Physics, Volume 252, Pages 163–194.

S. Schoch, N. Nikiforakis, B. J. Lee, 2013. “The propagation of detonation waves in non-ideal condensed-phase explosives confined by high sound-speed materials” Physics of Fluids, Volume 25, Issue 8, http://dx.doi.org/10.1063/1.4817069.

Numerical algorithms for the Euler equations with nonlinear EoS.

B.J. Lee, E.F. Toro, C.E. Castro, N. Nikiforakis, “Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state,” Journal of Computational Physics, 246:165-183 (2013). http://dx.doi.org/10.1016/j.jcp.2013.03.046

Multi-component, multi-phase thermal flow in porous media.

S. Lovett, F. Monmont and N. Nikiforakis 2014. "An experimentally-based in-situ combustion model with adaptive meshing", Combustion and Flame Volume 162, Issue 4, Pages 960–977, doi:10.1016/j.combustflame.2014.09.018.

S. Lovett, F. Monmont and N. Nikiforakis 2014. "Adaptive mesh refinement for compressible thermal flow in porous media." Journal of Computational Physics Volume 280, 1 January 2015, Pages 21–36 doi:10.1016/j.jcp.2014.09.017

D.E.A. van Odyck, S. Lovett, F. Monmont and N. Nikiforakis, "An efficient shock capturing scheme for multicomponent multiphase thermal flow in porous media", Proc. R. Soc. A (2012), 468 2147 3413-3440

F. Monmont, D.E.A. van Odyck and N. Nikiforakis, "Experimental and theoretical study of the combustion of triacontane in porous media", Fuel, 93, 28-36, 2012, doi:10.1016/j.fuel.2011.09.027 

D.E.A. van Odyck, J.B. Bell, F. Monmont and N. Nikiforakis, "The mathematical structure of multiphase thermal models of flow in porous media", Proc. R. Soc. A (2009) 465, 523–549.

Particulate flows

A.R. Koblitz, S. Lovett, N. Nikiforakis, W.D. Henshaw. 2016. "Direct numerical simulation of particulate flows with an overset grid method".  Journal of Computational Physics, Volume 343, Pages 414–431.  https://doi.org/10.1016/j.jcp.2017.04.058

Ab initio simulations

Strickson, O., Artacho E., Nikiforakis, N." 2015. Ab initio shock waves in silicon: efficiently locating the Hugoniot locus with first-principles molecular dynamics". APS Topical Conference on the Shock Compression of Matter.

Relativistic Hydrodynamics

P. Blakely, N. Nikiforakis, and W.D. Henshaw. 2014. "Assessment of the MUSTA approach to Special Relativistic Hydrodynamics." Astronomy & Astrophysics V575, A102.

P. Blakely, N. Nikiforakis, and W.D. Henshaw. 2014. "General Relativistic Hydrodynamics on Overlapping Curvilinear Grids." Astronomy & Astrophysics V575, A103.

P. Blakely and N. Nikiforakis. 2014. "Bondi-Hoyle-Lyttleton accretion in the relativistic regime, with perturbed density upstream of a spinning black hole." Astronomy & Astrophysics.

Detonation propagation in gases.

Mi, X., Higgins, A.J., Ng, H.D., Kiyanda, C.B., and Nikiforakis N. (2017). Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium. Phys. Rev. Fluids 2, 053201 https://doi.org/10.1103/PhysRevFluids.2.053201

Xiao Cheng Mi, Andrew J. Higgins, Hoi Dick Ng, Charles B. Kiyanda & Nikolaos Nikiforakis. 2016. "Propagation of Gaseous Detonation Waves in a Spatially Heterogeneous Reactive Medium".  XXIV ICTAM, 21-26 August 2016, Montreal, Canada.

Cael, G., Ng, H. D., Bates, K. R., Nikiforakis, N., & Short, M. (2009). Numerical simulation of detonation structures using a thermodynamically consistent and fully conservative reactive flow model for multi-component computations.  Proc.  Roy. Soc.  A, 465(2107), 2135-2153.

Ng, H. D., Botros, B. B., Chao, J., Yang, J. M., Nikiforakis, N., & Lee, J. H. S. (2006). Head-on collision of a detonation with a planar shock wave. SHOCK WAVES, 15(5), 341-352. doi:10.1007/s00193-006-0022-5

Ng, H. D., Radulescu, M. I., Higgins, A. J., Nikiforakis, N., & Lee, J. H. S. (2005). Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. COMBUST THEOR MODEL, 9(3), 385-401. doi:10.1080/13647830500307758

H Ng, A Higgins, C Kiyanda, M Radulescu, J Lee, K Bates, N Nikiforakis
Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations. Combustion Theory and Modelling 9 (1), 159-170

Clarke, J. F., & Nikiforakis, N. (2000). Remarks on diffusionless combustion. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 358(1764), 3605-3620.

Nikiforakis, N., & Clarke, J. F. (1996). Quasi-steady structures in the two-dimensional initiation of detonations. P ROY SOC LOND A MAT, 452(1952), 2023-2042.

Nikiforakis, N., & Clarke, J. F. (1996). Numerical studies of the evolution of detonations. Mathematical and Computer Modelling, 24(8), 149-164.

J.W. Dold, M. Short, J.F. Clarke, N. Nikiforakis, Accumulating sequence of ignitions from a propagating pulse, Combustion and Flame, Volume 100, Issue 3, February 1995, Pages 465-473.

Combustion.

J.C. Vassilicos, N. Nikiforakis, Flamelet-vortex interaction and the Gibson scale, Combustion and Flame, Volume 109, Issue 3, May 1997, Pages 293-302

Hydrodynamic, time-dependent semiconductor device simulations. 

A.M.Anile, N.Nikiforakis, V.Romano, G.Russo, ``Discretization of semiconductor device problems. II'', Handbook of numerical analysis. Vol. XIII, 443--522, North-Holland, Amsterdam, 2005. Handbook of numerical analysis. Vol. XIII, 443--522, North-Holland, Amsterdam, 2005

Anile, A. M., Nikiforakis, N., & Pidatella, R. M. (2001). Assessment of a high resolution centered scheme for the solution of hydrodynamical semiconductor equations. SIAM J SCI COMPUT, 22(5), 1533-1548.

Global atmospheric modelling.

"Developing the next-generation climate system models: challenges and achievements", Julia Slingo, Kevin Bates, Nikos Nikiforakis, Matthew Piggott, Malcolm Roberts, Len Shaffrey, Ian Stevens, Pier Luigi Vidale and Hilary Weller. Phil. Trans. R. Soc. A 13 March 2009 vol. 367 no. 1890 815-831 Second in the top ten list of downloaded articles in 2009: Second in the top ten list of downloaded articles in 2009 of the Philosophical Transactions of the Royal Society.

Philosophical Transactions of the Royal Society A, Theme Issue "Mesh generation and mesh adaptation for large-scale Earth-system modelling" compiled and edited by N. Nikiforakis November 28, 2009; 367 (1907)

"Adaptive mesh refinement for global atmospheric modelling", N. Nikiforakis, Lecture Notes in Computational Science and Engineering, Volume 41, Adaptive Mesh Refinement - Theory and Applications, Tomasz Plewa, Timur Linde and V. Gregory Weirs(editors), Springer Berlin Heidelberg 2005.

"A Three-Dimensional, Adaptive, Godunov-Type Model for Global Atmospheric Flows", M. E. Hubbard* and N. Nikiforakis, Monthly Weather Review 2003; 131: 1848-1864

Cartesian, cut cell methods for mesh generation.

N. Gokhale, N. Nikiforakis, R. Klein 2016. A dimensionally split Cartesian cut cell method for hyperbolic conservation
laws (submitted).

W.P. Bennett, N. Nikiforakis and R. Klein. 2016. A Moving Boundary Flux Stabilization Method for Cartesian Cut-Cell Grids using Directional Operator Splitting (submitted).

http://dx.doi.org/10.2514/6.2016-0602

Yamazaki H., Satomura T. and Nikiforakis N. (2016)
3D cut-cell modelling for high-resolution atmospheric simulations
Quarterly Journal of the Royal Meteorological Society http://dx.doi.org/10.1002/qj.2736

Klein, R., Bates, K. R., & Nikiforakis, N. (2009). Well-balanced compressible cut-cell simulation of atmospheric flow. Philos Trans A Math Phys Eng Sci, 367(1907), 4559-4575. doi:10.1098/rsta.2009.0174.

Implicit Large Eddy Simulations and turbulent flows

A Aspden, N Nikiforakis, S Dalziel, J Bell (2008). Analysis of implicit LES methods
Communications in Applied Mathematics and Computational Science 3 (1), 103-126.

Aspden, A., Nikiforakis, N., Bell, J., & Dalziel, S. (2017). Turbulent jets with off-source heating. Journal of Fluid Mechanics, 824, 766-784. DOI: https://doi.org/10.1017/jfm.2017.272

Shock wave phenomena

Ian G Cullis, Nikos Nikiforakis, Peter Frankl, Philip Blakely, Paul Bennett and Paul Greenwood (2016). "Simulating Geometrically Complex Blast Scenarios."
Defence Technology, vol12, issue2,
doi:10.1016/j.dt.2016.01.005

"Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF_{6}", Bates, K. R., Nikiforakis, N. & Holder, D. Physics of Fluids 19, 2007, 036101-1-036101-16.

Ng, H. D., Abderrahmane, H. A., Bates, K. R., & Nikiforakis, N. (2011). The growth of fractal dimension of an interface evolution from the interaction of a shock wave with a rectangular block of SF6. Communications in Nonlinear Science and Numerical Simulation, 16(11), 4158-4162.

Aircraft icing

http://dx.doi.org/10.2514/6.2016-0600